
www.manaraa.com

Brigham Young University
BYU ScholarsArchive

All Theses and Dissertations

2008-04-02

Increasing DOGMA Scaling Through Clustering
Nathan Hyrum Ekstrom
Brigham Young University - Provo

Follow this and additional works at: https://scholarsarchive.byu.edu/etd

Part of the Computer Sciences Commons

This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in All Theses and Dissertations by an
authorized administrator of BYU ScholarsArchive. For more information, please contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.

BYU ScholarsArchive Citation
Ekstrom, Nathan Hyrum, "Increasing DOGMA Scaling Through Clustering" (2008). All Theses and Dissertations. 1369.
https://scholarsarchive.byu.edu/etd/1369

http://home.byu.edu/home/?utm_source=scholarsarchive.byu.edu%2Fetd%2F1369&utm_medium=PDF&utm_campaign=PDFCoverPages
http://home.byu.edu/home/?utm_source=scholarsarchive.byu.edu%2Fetd%2F1369&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu?utm_source=scholarsarchive.byu.edu%2Fetd%2F1369&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F1369&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F1369&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarsarchive.byu.edu%2Fetd%2F1369&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd/1369?utm_source=scholarsarchive.byu.edu%2Fetd%2F1369&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsarchive@byu.edu,%20ellen_amatangelo@byu.edu

www.manaraa.com

INCREASING DOGMA SCALING THROUGH CLUSTERING

by

Nathan Ekstrom

A thesis submitted to the faculty of

Brigham Young University

in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computer Science

Brigham Young University

August 2008

www.manaraa.com

Copyright c© 2008 Nathan Ekstrom

All Rights Reserved

www.manaraa.com

BRIGHAM YOUNG UNIVERSITY

GRADUATE COMMITTEE APPROVAL

of a thesis submitted by

Nathan Ekstrom

This thesis has been read by each member of the following graduate committee and
by majority vote has been found to be satisfactory.

Date Quinn Snell, Chair

Date Mark Clement

Date Kevin Seppi

www.manaraa.com

BRIGHAM YOUNG UNIVERSITY

As chair of the candidate’s graduate committee, I have read the thesis of Nathan
Ekstrom in its final form and have found that (1) its format, citations, and bibli-
ographical style are consistent and acceptable and fulfill university and department
style requirements; (2) its illustrative materials including figures, tables, and charts
are in place; and (3) the final manuscript is satisfactory to the graduate committee
and is ready for submission to the university library.

Date Quinn Snell
Chair, Graduate Committee

Accepted for the
Department Parris K. Egbert

Graduate Coordinator

Accepted for the
College Thomas W. Sederberg

Associate Dean, College of Physical and Mathematical
Sciences

www.manaraa.com

ABSTRACT

INCREASING DOGMA SCALING THROUGH CLUSTERING

Nathan Ekstrom

Department of Computer Science

Master of Science

DOGMA is a distributed computing architecture developed at Brigham Young

University. It makes use of idle computers to provide additional computing resources

to applications, similar to Seti@home. DOGMA’s ability to scale to large numbers

of computers is hindered by its strict client-server architecture. Recent research with

DOGMA has shown that introducing localized peer-to-peer downloading abilities en-

hances DOGMA’s performance while reducing the amount of network and server

usage[1]. This thesis proposes to further extend the peer-to-peer abilities of DOGMA

to include peering client server communication by creating dynamic clusters of clients.

The client clusters aggregate their communication with only one client communicat-

ing with the server directly. This further reduces the network traffic and server usage

allowing more clients to connect to a single server and increasing the overall scalability

of DOGMA systems.

www.manaraa.com

ACKNOWLEDGMENTS

I would like to thank my wife Jessica for her unwavering support and never

letting me give up, my parents for always pushing me to do my best, and my com-

mittee Dr. Snell, Dr. Clement, and Dr. Seppi for their patience with a part time

student.

www.manaraa.com

Contents

1 Introduction and Motivation 1

1.1 Introduction . 1

1.2 Motivation . 1

1.3 Hypothesis . 2

2 Related Work 3

2.1 Local Client Server Distributed Application Systems 3

2.2 Internet Wide Distributed Application Systems 4

2.3 Java Distributed Computing Library 4

2.4 Proxies . 5

2.5 MapReduce . 5

2.6 Peer-to-peer . 5

2.7 Summary . 6

3 DOGMA 7

3.1 Introduction . 7

3.2 Client . 8

3.3 Server . 8

3.3.1 Communication Layer . 9

3.3.2 Management Website . 10

3.3.3 Scheduler . 10

vii

www.manaraa.com

4 Methods 11

4.1 Server . 11

4.2 Client . 12

5 Validation 17

5.1 Experimental Setup . 17

5.2 Results . 17

5.2.1 Network Usage . 18

5.2.2 CPU Usage . 22

5.3 Summary . 24

6 Contributions and Future Work 25

6.1 Contributions . 25

6.2 Future Work . 26

6.2.1 Security . 26

6.2.2 Long running app-parts . 27

6.2.3 Acquiring a non-local Aggregator 27

6.2.4 Message Optimization . 27

Bibliography 29

Appendix A 31

viii

www.manaraa.com

Chapter 1

Introduction and Motivation

1.1 Introduction

Distributed computing is used for MIMD applications which can be run on multiple

machines across a network. It can involve thousands of machines or only a few and is

an important research tool in many areas. Recent years have seen an increase in both

the use and availability of distributed computing systems: Boinc (Seti@home)[2],

Folding@home[3], XGrid[4], Condor[5], and Globus[6] are some examples. All of

these systems allow researchers to split a large task into smaller parts for processing

on numerous computers. An important facet of many of these systems is that they

allow idle machines to be put to productive use.

At Brigham Young University another system for distributed computing has

been developed called DOGMA(Distributed Object Group Meta Computing Archi-

tecture). It has been used for tasks such as distributed rendering of computer graphics

and phylogenetic tree search.

1.2 Motivation

DOGMA uses a client server architecture, making the server a bottleneck when large

numbers of clients are available for use. Previous research[1] has shown that by in-

troducing peer-to-peer techniques into DOGMA, specifically for downloading data

used for processing, significant performance increases occur. These performance in-

1

www.manaraa.com

creases allow for a less powerful server, less bandwidth between clients and server,

more clients connecting to a single server, and lower operating costs. These increases

make the system more available to researchers with a limited budget.

DOGMA still has scaling issues related to client server communication. As

more clients join the system the server becomes bogged down and unable to handle

the load. The amount of network traffic to and from the server as well as active

connections grows linearly with the number of clients and can appear to network

monitoring systems as a denial of service attack. An effective distributed computing

platform should be able to add more clients without a linear increase in network and

processor usage at the server.

1.3 Hypothesis

DOGMA is unable to scale to large numbers of clients because of the bottleneck cre-

ated by server resources. Introducing peer-to-peer technologies to DOGMA’s commu-

nication layer will allow clients to cluster together and have a single member aggregate

all client server communication for the group. Clustering will reduce the network and

server load, allowing the system to scale to larger numbers of clients.

2

www.manaraa.com

Chapter 2

Related Work

2.1 Local Client Server Distributed Application Systems

Condor[5], Globus[6], and Legion[7] are similar systems for distributed computing.

They all use a client server architecture where the servers are near the clients, i.e. do

not cross organizational boundaries. Both Condor and Globus provide a mechanism

for scaling while Legion does not explicitly provide any.

Condor uses an idea termed ”flocking” which allows multiple groups or ”flocks”

to share work providing a larger pool from which to draw resources. Flocking is also

their method of allowing clients to be used across organizational boundaries. Each

organization or group of clients has their own scheduling server. Each scheduler then

is configured to communicate with the other servers when resources are needed or

available.

Globus provides a similar mechanism where servers can setup communication

with each other and share resources. Globus also provides a mechanism for creating

a hierarchy of servers. Both of these systems are effective but they require a great

deal to setup, maintain, and run. They are also unable to scale dynamically with

load and instead require static setup of additional servers.

3

www.manaraa.com

2.2 Internet Wide Distributed Application Systems

Boinc(Seti@Home)[2], and Folding@Home[3] are two well known systems which al-

low people to donate their idle processor time to a cause. Each uses a client server

architecture. A major difference between DOGMA and these systems is client man-

agement. Both of these systems give a large chunk of data to a client and then, in

essence, forget about them until the results are returned. To ensure a result for a

given data set the same set is given to multiple clients. This causes wasted processing

time when more than one client finishes with that set. DOGMA is more real-time;

wanting frequent updates so that it can reassign work if a client goes off-line.

2.3 Java Distributed Computing Library

The Java Distributed Computing Library(JDCL)[8] is the distributed computing plat-

form most similar to DOGMA which uses a client-server architecture written in Java.

It is not as flexible as DOGMA and is meant to only run programs which use the

JDCL.[9]

Similar to DOGMA the JDCL suffers from problems of scaling[10]. To alleviate

this problem they create a multi-tiered server architecture to make their system ”scale-

free”. Their approach creates a n-tiered tree of nodes. Internal nodes, which act as

servers, receive work from their parent and try to balance that work among all of their

children. This continues until it reaches a leaf node where it is finally processed. Their

hierarchy of server/schedulers is effective at allowing their system to scale. However it

has several issues which make it inappropriate for implementation in DOGMA. First,

they require additional dedicated servers to improve their scaling which introduces

administrative overhead. Second, each server in the hierarchy has to be setup and

configured by hand which can be difficult and sometimes wasteful. For example, if

many nodes join the tree and additional servers were configured to accommodate

4

www.manaraa.com

them, when the nodes leave, the servers are still running until they are manually

removed. Third, JDCL programs either are not able to take advantage of locality or

they need the ability to setup a server node in the same area as the nodes. This can

be difficult to do when crossing organizational boundaries.

2.4 Proxies

Proxies act as mirrors or relays for clients. A proxy acting simply as a mirror is

inappropriate for DOGMA because all requests generate dynamic responses. Proxies

also require manual setup and introduce organizational management issues.

2.5 MapReduce

MapReduce is a model of programming developed at Google[11]. It uses a map

function which takes a key/value pair as input and returns a set of intermediate

key/value pairs. The intermediate key/value pairs with the same key are all given

to a reduce function which merges them together providing a new list of key/value

pairs. Many problems can be expressed in this way but it is not a general purpose

distributed computing model like DOGMA.

An important fact of Google’s implementation of this model is their use of

locality. They have extremely larges sets of data to process and network bandwidth

is at a premium. As a result they try to schedule work at nodes that already have

the desired data or at ones near nodes with the needed data.

2.6 Peer-to-peer

Peer-to-peer systems use direct peer communication allowing for the elimination of

the server. These systems can scale extremely well. However, they lack a central

point of control and entry. A complete peer-to-peer system is inappropriate for our

5

www.manaraa.com

situation and would make the system much more difficult to manage. Adding aspects

of peer-to-peer systems however, has already been shown to increase the scalability

of DOGMA[1].

Recent research has shown that incorporating peer-to-peer technology into

the file distribution has increased its ability to scale by reducing network and server

usage. The research introduces LURP (Local URL Resolution Protocol)[1]. Clients

using LURP ask local neighbors if they already have a file. If a neighbor has it, the

client gets the file from the neighbor. In the case where a neighbor does not have

the file but is currently downloading it, the client waits for the neighbor to finish and

then acquires the file from it. This use of locality allows DOGMA clients to be less

demanding on limited network resources.

2.7 Summary

Current distributed computing systems all have one of two problems. Either they

require additional server infrastructure to handle more clients or they cannot handle

general computing tasks, requiring the use of their library. DOGMA has the first

problem, it requires a more powerful server to continue to scale. Adding peer-to-peer

techniques into client server communication will reduce the need for a more powerful

server while still increasing scaling and performance.

6

www.manaraa.com

Chapter 3

DOGMA

3.1 Introduction

DOGMA is a distributed computing scheduler designed to work in a shared nothing

environment and processing elements may come and go at any time. It works best

with trivially parallel jobs which can be easily divided into specific parts.

A job consists of one or more ”app-parts”. An app-part is a piece of work

which can be given to an individual computer to complete. In order to successfully

run an app-part, the machine running it requires a command line to execute as well

as any files needed for the job.

Different client machines may be running different operating systems with

different CPU architectures, for example x86 or PPC, so DOGMA has developed the

notion of a platform. A platform is simply an operating system and CPU architecture

combination. Command lines are associated with platforms so that when the server

is giving clients app-parts to work on it can give a command line that will work for

that specific machine.

DOGMA also has the notion of commands. Commands are just message types

which tell a client to start or stop working on an app-part. In the future commands

could be added for pausing, resuming, connecting to a specific client cluster, etc.

7

www.manaraa.com

3.2 Client

There are two separate pieces which make up the client. The first piece is the boot-

strapping mechanism. The bootstrapper is a simple piece of code which takes a URL

to a Java class repository and a class to run. It then loads the repository like a jar file

and executes the Run function on that class. The system could launch the DOGMA

client directly with this mechanism. However, this would have the undesired con-

sequence of greatly increasing network traffic because any time the client loaded a

class it would force a network call. Instead, the bootstrapper loads a class which

downloads the latest DOGMA jar files and dependencies putting them in their own

separate class loader, this prevents network calls from being made when classes are

loaded. It then executes the Run function on the main DOGMA client, whose name

is acquired from a dynamically generated properties file provided by the server. The

boostrapping mechanism could be used to launch almost any Java based application.

The main DOGMA client performs some initial setup of directories and aux-

iliary services and then enters its main loop. The main loop does only two things.

First it does a check in with the server providing information about what the client is

currently working on. It then executes any commands it receives back. Currently only

start and stop commands exist. If the client receives back no commands it continues

what it is doing.

3.3 Server

The DOGMA server consists of three main parts. They are the communication layer,

the management website, and the scheduler. The communication layer makes use

of the SOAP protocol and is responsible for handling communication with clients as

well as providing a programmatic interface for job management. The management

website allows administrators to easily monitor the current state of the system and

8

www.manaraa.com

alter or add jobs. The heart of the system is the scheduler which runs periodic control

loops used to update the system.

3.3.1 Communication Layer

The communication layer provides a SOAP interface for programmatically altering

existing jobs or adding new ones. It also provides the interface through which clients

can update their status with the server and receive work. The use of SOAP for

communication with clients as well as other systems allows for third parties to more

easily interface with the DOGMA system.

Figure 3.1: Communication Layer and Scheduler interaction through in memory data
structures.

When clients connect to the server their information is stored in memory and

later processed and persisted by the scheduler. Figure 3.1 shows the interaction be-

tween the scheduling and communication layers through two data structures which

9

www.manaraa.com

hold the information each stores for processing or us by the other. While communi-

cating with clients the server looks at what the client currently reports it is working

on and will provide different work, give more if the client has available processors,

cancel what the client is currently working on, or have the client continue what it is

doing. At no point during communication with the client does the server talk to a

database or go to disk. This helps keep responses fast and allows the server to handle

more clients.

3.3.2 Management Website

The Management Website provides an interface for humans to interact with the sys-

tem. It provides information about currently running jobs as well as statistics about

the state of the overall system including how many clients are currently connected

and information about each. Administrators and job owners are also able to add jobs,

edit or delete existing ones, or view the status if individual parts of a job.

3.3.3 Scheduler

The scheduling system’s main purpose is to populate in memory data structures used

by the communication layer when providing work to clients(Figure 3.1). These data

structures are organized according to the OS and architecture of clients and contain

all of the information needed by a client to start processing a job. The scheduling

system is also responsible for processing client updates as well as removing inactive

clients from the connected list and redistributing parts they were working on.

10

www.manaraa.com

Chapter 4

Methods

Peer-to-peer applications are able to scale to large numbers of clients with

little or no server resources required. By incorporating peer-to-peer techniques into

DOGMA it will allow the system to scale well beyond its current abilities. Specifi-

cally by introducing peer-to-peer techniques into client server communications it will

allow the clients to form clusters. These clusters will then use a single member, the

aggregator, to communicate with the server instead of each doing it individually.

While adding clustering abilities did not necessitate any changes to the DOGMA

server, the opportunity was taken to simplify pieces of it as well as add optimiza-

tions. The DOGMA client was left largely the same with changes only being made

in the communication layer.

4.1 Server

Though it was not required, a complete rewrite of the server was done. The rewrite

was completed using updated technology which allowed for a reduction in the number

of lines of code as well as the complexity of the system. The updated technology

should also allow for greater scaling abilities, however no tests were done comparing

the old and new system.

One of the simplifications to the system was the reduction of the number of

client message types. There were three different types of messages one for client start

11

www.manaraa.com

up, one for updates, and finally one for client shutdown. These three were reduced to

a simple update message. While reducing the number of message types, the server was

also altered to allow more than one client to be updated in a single communication

packet.

Each update message contains all of the information the server needs to know

about the client, including the amount of memory, the type of processor, and the

operating system currently running. The type of processor and operating system

are used to determine what jobs may be run on the client. The mac address of the

network interface used to communicate with the server is also included in the message

to allow the server to uniquely identify the client.

Another important change to the server was the elimination of database actions

required when a client communicates with the server. All client messages to the server

are put into a queue which a control loop runs through every five seconds. Messages

are removed from the queue and processed, updating information about individual

clients as well as possible updates to the tasks and jobs they are running.

A different control loop acts to provide work for the clients. It does so by filling

platform specific queues with information regarding available tasks. These queues are

accessed when clients perform updates to provide additional work when needed.

4.2 Client

The DOGMA client changed very little with the only significant changes occurring

in the communication layer. The DOGMA client is modularized allowing different

pieces to be easily changed. The DOGMA Communicator is the client code which

deals with communications with the server. To instrument clustering, only this code

was replaced.

The new clustering communicator consists of two separate parts: the aggrega-

tion server and the client communicator. The aggregation server contains two data

12

www.manaraa.com

maps. One map contains the updates being sent from the clients to the server. The

other map contains the server responses. A control loop communicates with the server

a little more often than a regular client would. Right before communicating, the client

update map has all of its data added to an array and is then cleared. This ensures

that stale updates are not sent to the server and allows clients which have gone down

to time out and have any of their assigned work redistributed to other clients.

The array of updates is sent to the server in one SOAP message. The returned

message may contain an array of one or more responses, or nothing. The responses are

separated out and put into the response map, whose entries are accessed and removed

as clients perform updates with the aggregation server. If a client has a message put

into the response map any messages it has put into the update map are removed

so that the client can react to server commands and not have an inaccurate update

sent to the server, this prevents the client from receiving duplicate server commands.

When a client communicates with the aggregation server, if the update map contains

an entry for that client it is replaced instead of later sending both updates.

The client communicator performs a couple of steps whenever the client wants

to send an update to the server. It first checks to see if it already knows of an

aggregation server. If it does, then it attempts to connect to it and upon success

proceeds using that aggregation server. If the client is unable to connect to its known

aggregation server or it does not have a known aggregation server it attempts to

locate one. To take advantage of locality, the client only wants an aggregation server

which is near by. Figure 4.1 illustrates the steps a client takes. First the client sends a

UDP broadcast on its local subnet enquiring for any active aggregator. If it receives a

response, the client proceeds using the newly found aggregator. If no aggregator can

be found the client starts a new aggregation server in a separate thread and connects

to it.

13

www.manaraa.com

Figure 4.1: Client Prepares to Update

Once the client has an aggregation server to communicate with it begins fol-

lowing the update cycle shown in Figure 4.2. First clients send their updates to their

aggregation server and receive back any pending messages from the server. Next the

aggregation server performs an update with the server including all current messages

from clients connecting to it. The server then sends back any responses which are

put into the aggregator’s response map and given to clients when they next connect

to update.

14

www.manaraa.com

Figure 4.2: Client Update

15

www.manaraa.com

16

www.manaraa.com

Chapter 5

Validation

5.1 Experimental Setup

To prove the usefulness of clustering, tests were run on clustering and non clustering

clients. The tests consisted of starting up and running a group of clients for 10

minutes with and without work in the server queue. Tests with work had enough

jobs and app-parts to keep all clients busy for the duration of the test. Because

work was available job descriptions were passed to the which generated more network

traffic. Tests were run starting with five clients and incrementing by five clients up

to twenty-five clients. It took approximately 4 hours to run a complete set of tests.

Measurements were taken of total network usage at each client. At the server

the network usage was monitored as well as the process CPU usage. It should be noted

that when clustered clients were running, only one client acted as an aggregation

server with all other clients connecting to it.

5.2 Results

The results exceeded expectations and clearly demonstrate the usefulness of adding

clustering abilities to DOGMA clients. Below are shown the results for tests run with

five and twenty-five clients. Appendix A contains a complete list of results for all

tests.

17

www.manaraa.com

5.2.1 Network Usage

Network usage was measured at the clients and the server. Usage was measured by

querying the Linux kernel with measurements taken every second. We were not able

to isolate the network usage for the individual process so network measurements were

for the total traffic entering and leaving each machine. This makes it impossible to

determine the exact usage of the client software but still provides enough information

for conclusions to be drawn about clustering versus non-clustering client network

usage.

Adding clustering significantly reduces the amount of network traffic at the

server. Keeping the majority of network traffic generated by the system on local

networks between clustered clients instead of crossing network boundaries talking to

the server.

Figure 5.1 shows the network usage at the server with five clients connecting.

The top graphs show usage when there are no jobs available to work on. This is

useful information because it shows how much network resources will be used even

when there is nothing useful happening on the system. The bottom graphs show the

network usage when the system is working on something. You can see by looking

at the top graphs that there is no significant difference in network usage when the

system has no work to provide to clients. When there is work and the server needs

to provide that information to clients, as well as the clients continually needing to

tell the server what they are working on, there is a significant network savings when

clients are clustering, as evidenced by the bottom graphs.

When there are more clients connecting the network savings become even

more significant. Figure 5.2 shows the same information as figure 5.1 except with

25 clients connecting to the server. The benefits of clustering can easily be seen.

Where before there was no significant difference in network usage when the system

had no work, the top graphs show a significant savings in network traffic. When the

18

www.manaraa.com

Figure 5.1: Server Network Usage: Reduced traffic when clustering and the system
is doing something useful.

19

www.manaraa.com

Figure 5.2: Server Network Usage: Significant reduction in network traffic when
clustering with higher numbers of clients.

20

www.manaraa.com

system is performing work there is even more of a savings. The bottom graphs show

a difference of almost twelve times the network usage when not clustering.

Figure 5.3: Server Network Usage Averages for 5 to 25 Clients: Non clustering clients
have much steeper lines.

When we look at how average network usage at the server changes with in-

creasing numbers of clients, as in figure 5.3, we can see how quickly network usage

increases when clients are not clustering while when they are clustering there is a very

gradual increase. Extrapolating the data for non clustering clients is fairly simple and

if we assume a linear progression. Doing so for 1000 clients suggests an average net-

work usage of more than 40 MB/s whether doing work or not. Doing the same linear

extrapolation for clustering clients is more difficult because in our experiments we

only ever had one aggregation server. We cannot assume that it would remain linear

and would expect more of a stair stepping pattern as more aggregation servers are

21

www.manaraa.com

added. If we do assume a stair stepping pattern and use that for extrapolating to

1000 clients with cluster sizes of 25, average network usage would only be 3-4 MB/s.

Figure 5.4: Average Client Network Usage: No significant change.

With such a significant reduction in network traffic at the server we expected

to see a large jump in traffic at the clients, however that was not the case. Figure 5.4

shows the average network usage at the clients with five and twenty five clients. In

both cases we are only showing the average traffic when the clients have work because

that is when they would be sending the most information back and forth. In all cases

however there was no significant change in network usage.

5.2.2 CPU Usage

Processor usage statistics were only taken at the server. Measurements were taken

every second using the ps command in Linux. Instead of getting what percentage

22

www.manaraa.com

of the processor was used for the process, the total number of seconds was recorded.

Figure 5.5 shows the total number of seconds consumed by the server process for five

to twenty five clients. The top graphs show the total number of seconds consumed

for clustered and non clustered clients receiving work. The bottom graphs show the

same as the top except without work. The top and bottom graphs show the same

thing. As the number of clients increases there is no significant change in CPU usage

with clustering clients. Without clustering however the CPU usage increases almost

linearly with the number of clients.

Figure 5.5: Server CPU Usage: Clustered CPU usage fairly constant. Non Clustered
CPU usage increases almost linearly.

If we again extrapolate the data to 1000 clients, without clustering we would

expect the server process to require at least 1200 seconds. That equals 20 minutes

of processor time. Considering that each test ran for only 10 minutes we expect that

23

www.manaraa.com

the server process would require more time than the system could actually provide.

Using extrapolation we would expect the server to be able to handle at most 500

clients.

Extrapolating the clustered data is again more difficult. If we assume a stair

stepping pattern once more, 1000 clients in clusters of 25 would require 120 seconds

of processor time or about one fifth of the total time available. This means that a

single server running with clustering clients, instead of being able to handle only 500

clients would be able to handle closer to 5000 at once. This of course assumes that

clients cluster into groups of 25. If the average cluster size were smaller we would

expect the max number of clients to be lower as well, while with larger clusters sizes

the reverse would be true.

5.3 Summary

Adding clustering abilities to the clients is beneficial to the scalability of the DOGMA

system. Clustering reduces network traffic at the server with no significant changes

at the client. Processor benefits from clustering are even more pronounced than

network benefits. As the number of clients increases there is no significant change in

the amount of CPU time required by the DOGMA server.

24

www.manaraa.com

Chapter 6

Contributions and Future Work

6.1 Contributions

There are many distributed computing platforms available. However, none are able to

both handle generic work and scale dynamically. DOGMA is able to handle generic

work but fails to scale to the desired level because of the bottleneck created by

constant communication with the server. By adding peer-to-peer abilities to the

clients for communicating with the server they are able to form clusters and aggregate

their communications through a single member. By aggregating communications

with the server through single member the load on the server is greatly reduced and

DOGMA will be able to scale to much larger numbers of clients.

Testing showed that even with only few clients there was a noticeable difference

in the load generated on the server when clients were clustering and aggregating their

communication. Both the network and processor usage were significantly reduced

when clients clustered.

Network usage at the server rises much more slowly when clients cluster. With

twenty five clients clustered network usage is one tenth non clustered usage. CPU us-

age follows a more extreme trend with total CPU time remaining fairly constant when

clustering and increasing numbers of clients. While CPU time with non clustering

clients increases linearly.

25

www.manaraa.com

6.2 Future Work

6.2.1 Security

Security is important to consider in any system and DOGMA is no exception. With-

out proper security, the DOGMA system could be easily taken over and become

another bot-net. Currently the only security is on the server and involves a sim-

ple login procedure. This was deemed adequate previously because it was assumed

DOGMA was running on a secured network, meaning an attacker could not take over

the network and pretend to be the DOGMA server. The introduction of clustering,

however complicates things.

Clustering allows for a new kind of attack which, while not able to take over

the entire system, allows for the hijacking of clients. An attacker with access to a

DOGMA subnet could pose as a cluster aggregator. Once clients are checking in, the

fake aggregator could hand out any sort of work it desired pretending it was from the

DOGMA server.

Clustering introduced changes in communications sent between the client and

server. Multiple messages are easily aggregated together. The server also now expects

messages from multiple clients to come through at a single time and sends messages

meant for multiple clients in response. Messages meant for different clients are self

contained however and simply appended together. This allows for the introduction

of a simple, yet robust security model for client server communication. A single field

could be added to the client messages allowing the server to sign each one. Using a

public-private key architecture clients would have a copy of the servers public key and

the server could perform a hash of the message sent and then sign the hash. Clients

could then easily verify that each message received did in fact come from the server.

26

www.manaraa.com

6.2.2 Long running app-parts

Boinc and Folding@Home are fundamentally different systems from DOGMA. Instead

of constantly monitoring clients they hand out the same work to multiple clients and

then only expect to receive information back from those clients when the work has

been completed. For long running jobs with app-parts that take a long time to

process, this type of running environment works well.

With DOGMA’s new message structure, it should be easy to allow some jobs

and clients to run the same way. An obvious draw back to this method is that work

is repeated by clients however, it also potentially increases the client pool to include

ones which are only occasionally able to connect and report in.

6.2.3 Acquiring a non-local Aggregator

One weakness of the current clustering client is that it will only change its aggregator

if the aggregator becomes unreachable. This causes clients that have started their

own aggregator to never connect to another even if there are multiple available on the

current subnet. Such a situation can occur if the network was overtaxed at the time

the UDP aggregator search broadcast went out or if all of the clients were starting

up at the exact same time.

It could be useful for clients who are connecting to a locally started aggregator

to occasionally search for an aggregator on the subnet and if one exists, besides theirs,

connect to it instead. By increasing the cluster size more messages are pushed through

a single aggregator which reduces server usage.

6.2.4 Message Optimization

For simplicity, messages in an aggregation are completely self contained. This is

fine for messages from the client to the server. Messages from the server to the client

however may contain repetitive information. If the server has assigned multiple clients

27

www.manaraa.com

with the same job but different parts the information regarding what files to download

will be repeated. It may be useful to change how aggregate messages are structured

so that all repetitive information is sent only once and then let the aggregator split

it out for the clients connecting to it.

28

www.manaraa.com

Bibliography

[1] J. C. Ekstrom, “Local url resolution protocol,” Master’s the-

sis, Brigham Young University, July 2006. [Online]. Available:

http://contentdm.lib.byu.edu/ETD/image/etd1436.pdf

[2] “Boinc,” University of California Berkley. [Online]. Available:

http://boinc.berkeley.edu/

[3] S. M. Larson, C. D. Snow, M. R. Shirts, and V. S. Pande, “Folding@home and

genome@home: Using distributed computing to tackle previously intractable

problems in computational biology.” Computational Genomics, 2002. [Online].

Available: http://fah-web.stanford.edu/papers/Horizon Review.pdf

[4] “Xgrid, the simple solution for distributed computing,” Apple Computer, Inc.,

Tech. Rep., 2005.

[5] D. Thain, T. Tannenbaum, and M. Livny, “Distributed computing in practice:

the condor experience: Research articles,” Concurr. Comput. : Pract. Exper.,

vol. 17, no. 2-4, pp. 323–356, 2005.

[6] I. Foster, C. Kesselman, and S. Tuecke, “The anatomy of the grid: Enabling

scalable virtual organizations,” Int. J. High Perform. Comput. Appl., vol. 15,

no. 3, pp. 200–222, 2001.

[7] A. S. Grimshaw, W. A. Wulf, J. C. French, A. C. Weaver, and P. F. Reynolds Jr.,

“Legion: The next logical step toward a nationwide virtual computer,” University

of Virginia, Tech. Rep. CS-94-21, 8, 1994.

[8] K. Fritsche, J. Power, and J. Waldron, “A java

distributed computing library,” 2001. [Online]. Available:

http://www.cs.may.ie/∼jpower/Research/Papers/2001/pdcat01.pdf

[9] T. Keane, R. Allen, T. Naughton, J. McInerney, and J. Waldron, “Distributed

java platform with programmable mimd capabilities,” 2003.

29

http://contentdm.lib.byu.edu/ETD/image/etd1436.pdf
http://boinc.berkeley.edu/
http://fah-web.stanford.edu/papers/Horizon_Review.pdf
http://www.cs.may.ie/~jpower/Research/Papers/2001/pdcat01.pdf

www.manaraa.com

[10] A. Page, T. Keane, R. Allen, T. J. Naughton, and J. Waldron, “Multi-tiered

distributed computing platform,” in PPPJ ’03: Proceedings of the 2nd interna-

tional conference on Principles and practice of programming in Java. New York,

NY, USA: Computer Science Press, Inc., 2003, pp. 191–194.

[11] “Mapreduce: Simplified data processing on large clusters,” in OSDI’04: Sixth

Symposium on Operating System Design and Implementation, 2004, pp. 137–

150.

[12] I. Foster, C. Kesselman, J. Nick, and S. Tuecke, “The physiology of the grid: An

open grid services architecture for distributed systems integration,” 2002.

[13] G. Geist, J. Kohl, R. Manchel, and P. Papadopoulos, “New features of pvm

3.4 and beyond,” PVM Euro Users’ Group Meeting, no. September, pp. 1–2–10,

1995.

[14] A. S. Grimshaw, W. A. Wulf, J. C. French, A. C. Weaver, and P. F. Reynolds

Jr., “A synopsis of the legion project, Tech. Rep. CS-94-20, 8, 1994.

[15] “Exploiting hierarchy in parallel computer networks to optimize collective oper-

ation performance,” in IPDPS ’00: Proceedings of the 14th International Sym-

posium on Parallel and Distributed Processing. Washington, DC, USA: IEEE

Computer Society, 2000, p. 377.

[16] K. Aberer, P. Cudre-Mauroux, A. Datta, Z. Despotovic, M. Hauswirth,

M. Punceva, and R. Schmidt, “P-grid: a self-organizing structured p2p system,”

SIGMOD Rec., vol. 32, no. 3, pp. 29–33, 2003.

[17] K. C. Tan, M. L. Wang, and W. Peng, “A p2p genetic algorithm environment

for the internet,” Commun. ACM, vol. 48, no. 4, pp. 113–116, 2005.

[18] “Grid mp platform, 4.2 architecture overview.” [Online]. Available:

http://www.ud.com/resources/files/mp architecture.pdf

[19] N. H. Ekstrom and J. J. Ekstrom, “Dogma: An open source tool for utilization

of idle cycles on lab computers,” in Proceedings of the 2005 American Society

for Engineering Education Annual Conference & Exposition. American Society

for Engineering Education, 2005.

30

http://www.ud.com/resources/files/mp_architecture.pdf

www.manaraa.com

Appendix A

Figure 6.1: Server Network Usage: 5 Clients.

31

www.manaraa.com

Figure 6.2: Server Network Usage: 10 Clients.

32

www.manaraa.com

Figure 6.3: Server Network Usage: 15 Clients.

33

www.manaraa.com

Figure 6.4: Server Network Usage: 20 Clients.

34

www.manaraa.com

Figure 6.5: Server Network Usage: 25 Clients.

35

www.manaraa.com

Figure 6.6: Average Client Network Usage: 5 Clients.

36

www.manaraa.com

Figure 6.7: Average Client Network Usage: 10 Clients.

37

www.manaraa.com

Figure 6.8: Average Client Network Usage: 15 Clients.

38

www.manaraa.com

Figure 6.9: Average Client Network Usage: 20 Clients.

39

www.manaraa.com

Figure 6.10: Average Client Network Usage: 25 Clients.

40

	Brigham Young University
	BYU ScholarsArchive
	2008-04-02

	Increasing DOGMA Scaling Through Clustering
	Nathan Hyrum Ekstrom
	BYU ScholarsArchive Citation

	Title Page
	Abstract
	Table of Contents
	1 Introduction and Motivation
	1.1 Introduction
	1.2 Motivation
	1.3 Hypothesis

	2 Related Work
	2.1 Local Client Server Distributed Application Systems
	2.2 Internet Wide Distributed Application Systems
	2.3 Java Distributed Computing Library
	2.4 Proxies
	2.5 MapReduce
	2.6 Peer-to-peer
	2.7 Summary

	3 DOGMA
	3.1 Introduction
	3.2 Client
	3.3 Server
	3.3.1 Communication Layer
	3.3.2 Management Website
	3.3.3 Scheduler

	4 Methods
	4.1 Server
	4.2 Client

	5 Validation
	5.1 Experimental Setup
	5.2 Results
	5.2.1 Network Usage
	5.2.2 CPU Usage

	5.3 Summary

	6 Contributions and Future Work
	6.1 Contributions
	6.2 Future Work
	6.2.1 Security
	6.2.2 Long running app-parts
	6.2.3 Acquiring a non-local Aggregator
	6.2.4 Message Optimization

	Bibliography
	Appendix A

